I. INTRODUCTION

This guide has been prepared as a resource to help you progress toward your degree in the Department of Materials Science and Engineering (MSE) at Iowa State University. This handbook is far from all-inclusive, and it is intended to supplement other valuable sources of information such as the Iowa State University Catalog, AccessPlus, and information you will receive from your academic advisor or course instructors.

Iowa State University Catalog - http://catalog.iastate.edu/
AccessPlus - https://accessplus.iastate.edu
MSE Department - http://www.mse.iastate.edu

We hope you will read the MSE Undergraduate Handbook now and also refer to it frequently throughout the coming semesters. You can also access the MSE Undergraduate Handbook online on the MSE homepage (www.mse.iastate.edu). Under the “Current Students” drop-down menu, select the “Academic Advising” page, where you will find a number of academic advising resources.

We are here to help in whatever ways we can – please don’t hesitate to ask!
II. THE DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

The MSE Department was formed in 1975 by the merging of the two previously existing departments of Ceramic Engineering and Metallurgy. MSE is one of eight degree-granting departments in the College of Engineering.

The departmental office is located in 2240 Hoover Hall. At this location, you can find the Department Chair, academic advisors, and members of the MSE staff. Many departmental faculty are located in 2220 Hoover Hall.

II.A. The MSE Faculty

One of the most important elements in any department is its faculty and we have good reason to be extremely proud of ours. Our faculty are nationally- and internationally known experts in their fields. They are very student focused and excel in engaging students in course material and research opportunities.

II.B. The Advising System

Developing a good working relationship with your academic advisor will be critical to your success as a student. The goal of the departmental advising system is to assist you in the formation of an academic program that meets your career objectives and curriculum requirements. Your advisor interprets the rules and requirements of the university as well as the college and department, so you are able to make informed decisions.

APPENDIX A provides a list of MSE’s academic advisors. When you join the department, you will be assigned an official advisor, and you should utilize this person as your primary point of contact for any advising needs and questions. However, if you are experiencing an urgent advising issue and your advisor is unavailable, feel free to contact the alternate advisor or the MSE front office staff located in 2240 Hoover.

Communication is key to the advising relationship. For this reason, please keep your current address and phone number (cell preferred) updated on your AccessPlus profile. Check your ISU email frequently, as your advisor, MSE faculty and staff send many important messages. Email is considered an official form of communication by Iowa State University, so expect that it will be used to relay updates and notices from the university, college, and department.

If your advisor cannot resolve a problem, either academic or personal, or if you are unable to get in touch with the advisors for an urgent issue, the MSE Department Chair or Associate Department Chairs will be happy to assist you. You are encouraged to visit with both the Chair and Associate Chair at any time, even when there are no problems.
II.C. Teaching Facilities and Safety Policy

An attractive feature of our department is that the small class sizes make instruction more interactive, and our curriculum includes a large number of laboratory courses that provide hands-on education to students. All teaching laboratories for the department are located in Hoover Hall.

Specific instructions regarding procedures and techniques will be given to students enrolled in each laboratory course. Information will be provided concerning the specific safety precautions that must be followed by every student. Students are required to pursue their laboratory coursework in a safe, scientific, and professional manner.

Safety of all students, faculty, staff, and visitors is a top priority. The responsibility for your personal safety can never rest solely with the instructor or staff. It is your co-responsibility to become familiar with the safety guidelines. The major hazards encountered in the laboratory setting include high temperatures, dangerous chemicals, and ionizing radiation. Ask your instructor for information regarding safety provisions and emergency procedures. The use and location of tongs, protective gloves, explosion-proof storage units for flammable chemicals, chemical sinks, fume hoods, eyewash fountains, body showers, and monitors for ionizing radiation should be discussed at the beginning of the semester. If the instructor does not include this information in your introduction to the course, then you should ask either the instructor, MSE Lab Coordinator, or MSE’s Associate Chair for Undergraduate Education. Use your common sense – if you do not have enough information, please do not attempt any hazardous procedures.

II.D. MSE Student Room Facilities

The MSE department maintains excellent computer and study facilities for use by MSE undergraduate students. The student room is located in 3337 Hoover and contains computers (PC) with software needed for MSE homework and laboratory assignments, laser (B&W and color) printers and scanner. These computers are networked to the college file server as well as to the Internet.

The student room also has space available for group work, and students often meet there to work on homework and labs. The rooms are accessible 24 hours/day with a coded University ID card. (See the front desk staff in 2240 Hoover to gain access.) Your University ID card will also give you access to Hoover Hall after hours. Building hours are currently Monday through Saturday 6 a.m. to midnight, and Sunday 7 a.m. to midnight. The department’s systems support specialist maintains the computer lab. If you have questions, problems, or concerns, please email msetech@iastate.edu.
II.E. Undergraduate Research Opportunities

There are a significant number of opportunities for undergraduate students in MSE to secure part-time employment as research or teaching assistants. Faculty members in the department hire students as early as their first year in the program depending on the needs of the research group or course. You will hear about some positions through the MSE undergraduate email listserv or from faculty directly. However, at any time you can express your interest in these types of positions to your academic advisor. Your advisor can help you connect with opportunities that fit your interests and qualifications. Most positions are paid on an hourly basis, but occasionally faculty may offer you a non-funded position through enrolling in Mat E 499. Mat E 499 is a non-credit bearing course (offered for “R” or “required” credit, on satisfactory-fail basis), and it can be added to a student’s schedule in any fall, spring, or summer term through the designated add/drop deadline.

II.F. Co-op/Internships

Gaining experience outside the classroom is highly encouraged by the department and College of Engineering as a way to make yourself more knowledgeable, versatile, and marketable for post-graduation career endeavors. There are a couple types of experiences available:

- **Co-op** – semester + summer (6 months)
- **Summer Internship** – minimum of 10 weeks

Finding these positions is student-driven, but there are many resources available to help you in your search:

- **CyHire** – database which provides information about professional development and available positions (https://cyhire.iastate.edu/)
- **College of Engineering Career Fairs** – hundreds of employers visit campus each fall and spring semester for a one-day event that offers access to recruiters
- **MSE Advisors and Faculty** – watch for emails passed on from company contacts, as these are sent throughout the year
- **National job boards** (such as www.indeed.com)

To apply for positions, you will need to be ready to submit the following information:

- **Cover letter or statement of interest** – each application is different, but often you are asked to express why you are applying for the position and how your qualifications match well with the job requirements
- **Resume** – creating an effective resume is essential to summarizing your experience and activities for employers
- **References** – as you progress through your academic experience, remember to connect with faculty and staff who can later serve as professional or personal references during your job search
Engineering Career Services provides many resources which can help you develop these marketing materials for your job search. You can access their library of information here: https://www.engineering.iastate.edu/ecs/students/.

II.G. Study Abroad

One of the most exciting opportunities available to complement your Mat E curriculum is to study abroad! Whether you select an experience that lasts a few weeks or you plan ahead and study at an international institution for a semester or year, you will certainly gain a new perspective and broaden your cultural and academic knowledge. Students are able to select from a variety of locations worldwide, including (but not limited to):

- United Kingdom (England, Wales, Ireland, Scotland)
- Mainland Europe (Italy, Germany, France, Spain)
- Australia
- Singapore
- China

Brunel Program

Dr. Scott Chumbley, Professor in Materials Science & Engineering, coordinates a six-week summer program for first-year students at Brunel University (Uxbridge, England – western suburb of London). There is a preparation course during the spring semester before the program begins that teaches students about traveling, introduces them to British culture, and establishes the expectations for the experience abroad. During the summer session (early June to mid-July), students will have four weeks of coursework followed by two weeks of industry and cultural tours. Upon completion of the summer portion, students will get credit for:

- Mat E 391 (3 cr) – a general education course that meets ISU’s US Diversity requirement
- Mat E 392 (3 cr) – meets the Mat E 215 requirement
- ISU’s International Perspectives requirement

The deadline to apply for this program is early December of your first year of study. If you are interested in participating or would like additional information, please contact Dr. Chumbley (chumbley@iastate.edu) or your academic advisor.
The MSE Department offers an undergraduate curriculum that leads to a Bachelor of Science degree in Materials Engineering. The four-year curriculum sheet (found in Appendix B) offers a general template for academic planning. To create your own individual plan, taking into account your unique interests and goals, please consult your academic advisor.

III. ACADEMIC MATTERS

There are a number of resources available to help you track progress toward your degree:

- **Degree Audit** – document available through the “Student” tab on AccessPlus, which provides a list of degree requirements and accounts for the courses you have taken or are currently taking, as well as the transfer credits you may have brought in to ISU.
- **Curriculum Sheet** – visual way to show a typical progression of coursework (see Appendix B). You can follow the curriculum of your entry term or a more recent year.
- **Midterm grades** – posted on AccessPlus (“Grade Report” link) at the mid-point of each semester as a way for faculty to alert you if your current grade is a C- or below
- **Grade Report** – issued via AccessPlus at the end of each semester, noting the courses you completed and the grades you earned
- **Academic Advisor**

III.B. Pre-requisite Enforcement

When planning your course progression, please pay special attention to listed pre-requisites and co-requisites. If a course has a required pre-requisite, you must have completed the pre-requisite with a passing grade prior to taking the class. In some cases, there is a grade requirement attached to the pre-requisite. For example, you must earn a grade of C- or better in Math 165 (Calc I) to be eligible to move on to take Math 166 (Calc II). If a course lists a co-requisite, then you must have credit or concurrent enrollment in the co-requisite course while you are taking the class.

Pre-requisites and co-requisites are strictly enforced in the Materials Science & Engineering Department. In the case that a student does not meet the pre-requisite requirements for a course, the department will inform the student via email that they must either drop the course or provide evidence of equivalent preparation to be reviewed by the department. After such notification, the student has 3 business days to either drop the course or initiate a review of their equivalent preparation. Students can learn more about the pre-requisite waiver process through their academic advisor. If a student neither drops the course nor initiates a review of equivalent preparation, the department or instructor may initiate an administrative drop to remove the student from the course. Students whose request to waive the prerequisite is denied will be administratively dropped from the course. Course prerequisites are listed in the Schedule of Classes as well as in the Courses and Programs section of the ISU Catalog.
III.C. Program Objectives and Outcomes

The Materials Engineering curriculum has been designed to provide you with experiences to develop necessary knowledge and skills, and it follows the accreditation policies of our accrediting body, ABET.

Program Educational Objectives

Within the scope of the MSE mission, the objectives of the Materials Engineering Program are to produce graduates who

A. practice materials engineering in a broad range of industries including materials production, semiconductors, medical/environmental, consumer products, and transportation products.
B. engage in advanced study in materials and related or complementary fields.

Student Educational Outcomes

Graduates in materials engineering will have demonstrated the following at the time of graduation:

1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. An ability to communicate effectively with a range of audiences
4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgements, which much consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. An ability to develop and conduct appropriate experimentation, analyze, and interpret data, and use engineering judgement to draw conclusions
7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies

III.D. Choosing Area of Specialization

You must choose one area of specialization from the following types of materials: ceramics, metals, or polymers. You may also elect to use your required Mat E electives (6 cr.) or technical electives (12 cr.) to complete one or two additional specializations. The choice of specialization is typically made at the end of the sophomore year after you have taken the beginning sequence of core courses that cover all material types (Mat E 215, Mat E 216).
III.E. Grade Requirements for Graduation

In addition to the university rule that you must earn a **minimum cumulative ISU GPA of 2.0**, you also must earn a **minimum average GPA of 2.0** in the following core Mat E courses:

<table>
<thead>
<tr>
<th>Course Code 1</th>
<th>Course Code 2</th>
<th>Course Code 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mat E 170</td>
<td>Mat E 311</td>
<td>Mat E 413</td>
</tr>
<tr>
<td>Mat E 214</td>
<td>Mat E 314</td>
<td>Mat E 414</td>
</tr>
<tr>
<td>Mat E 215/215L</td>
<td>Mat E 317</td>
<td>Mat E 418</td>
</tr>
<tr>
<td>Mat E 216/216L</td>
<td>Mat E 319</td>
<td></td>
</tr>
</tbody>
</table>

Plus your four specialization courses (12 credits from your official area of specialization).

III.F. Communication Requirement

The MSE Department requires you to earn a grade of C or better in Engl 150 and 250 and one of the following courses: Engl 302, 309, or 314.

III.G. Departmentally Approved Electives

The Mat E degree program requires 12 credits of General Education electives and 3 credits of Technical Writing:

- **Gen Ed** (3 cr) – following criteria found in Appendix C.1
- **Gen Ed** (3 cr) – following criteria found in Appendix C.1
- **International Perspectives Requirement** (3 cr) – select from approved list found at: http://www.registrar.iastate.edu/students/div-ip-guide/IntlPerspectives-current
- **U.S. Diversity Requirement** (3 cr) – select from approved list found at: http://www.registrar.iastate.edu/students/div-ip-guide/usdiversity-courses
- **Technical Communication Requirement** (3 cr) – select one of the following courses:
 - Engl 314 – Technical Communication
 - Engl 302 – Business Communication
 - Engl 309 – Report and Proposal Writing

Additionally, students are able to tailor their curriculum to their individual interests through required technical electives. Students must take 6 credits of Mat E electives and 12 credits of technical electives (criteria found in Appendix C.2) from the approved departmental list.
Mat E Electives (must take a minimum of 6 credits) – 300+ level course in Mat E or MSE, with the following exceptions:

- Students cannot use Mat E 391, Mat E 392, or a course in their declared specialization
- Students cannot use Mat E 490, MSE 590, or MSE 699 without prior approval from the MSE Curriculum Committee before the course is taken. Please see your academic advisor for more information.

Technical Electives (must take a minimum of 12 credits) – 300+ level course in STEM fields, with the following exceptions:

Students **cannot** take any of the following to meet the technical elective requirement

- Courses in the 490s/499s/590s in any department without prior approval from the MSE Curriculum Committee before the course is taken. Please see your academic advisor for more information.
- Biol 307 (cross-listed with W S)
- Mat E 391, Mat E 392
- M E 484/584
- Stat 305

III.H. Course Substitution Policies

<table>
<thead>
<tr>
<th>Credit deficiency in…</th>
<th>Courses which may be used to fill credit deficiency</th>
</tr>
</thead>
</table>
| 100- level math & science course | 100+ level STEM courses
However, it may **not** be a course remedial to the Mat E undergraduate program (i.e. Math lower than 165, Chem lower than 177, Phys lower than 221, lower level Stat, Com S 103, etc) |
| 200- level math & science course | ≤ 3 credits total deficiency across degree program:
200+ level STEM courses
However, it may **not** be a course remedial to the Mat E undergraduate program (i.e. Phys lower than 221, lower level Stat)
Beyond 3 credits total deficiency across degree program:
200+ level courses in Math or Science
May not use Engineering courses |
| 200- level engineering course | 200+ level STEM courses |
| 300- or 400- level STEM course | 300- or 400- level STEM courses |
(EM 274 + EM 324) requirement changed to Mat E 319

- Applies to students on active catalogs through 2017. Students on the 2018 catalog (or more recent) should take Mat E 319.
- Students must choose one of the following ways to meet the degree requirements:
 - EM 274 (3 cr) + EM 324 (3 cr)
 - Mat E 319 (3 cr) + technical elective (3 cr)
- **Important note:** Only one of Mat E 319 or (EM 274 + EM 324) may be used toward graduation requirements.

III.I. Pass/Not Pass Grading

Students may take up to six credits of general education on a pass/not pass basis, meaning that only a P (pass – earned grade of D- or better) or NP (not pass – earned grade of F) will be recorded as their final grade in the course. However, those courses meeting U.S. Diversity and International Perspectives requirements may NOT be taken P/NP. The purpose of P/NP grading is to encourage students to take more challenging courses than their usual program of study requires. You may not be on academic probation to take a course P/NP. If interested, students should discuss this option with their advisor.

III.J. Scholarships

The Department maintains an outstanding scholarship program for its undergraduate students. Also, many general scholarships open to students in all disciplines of the College of Engineering are available to students in our department. In recent years, Mat E students have received scholarships ranging from $250-$7500.

To apply for any of the scholarships offered by the MSE Department or the College of Engineering, a student **MUST** complete the College of Engineering scholarship application, which is available online (http://www.engineering.iastate.edu/scholarships/current-students/). **The deadline to submit scholarship applications is around February 1st each year.**

III.K. Student Organizations

One of the best ways to get engaged in materials engineering is to become an active member of one or more of MSE’s outstanding student organizations. You will get to know your peers, network with faculty and industry professionals, and have the chance to develop your leadership skills. A list of current student officers can be found in Appendix D.

Material Advantage (MA) – an award-winning student chapter of four professional Materials Science & Engineering societies: American Society of Materials (ASM), The Materials Society (TMS), The American Ceramic Society (ACerS), and The Association for Iron & Steel
Technology (AIST). Students are actively involved in K-12 outreach, community service, professional development, and networking with research and industry experts. For additional information, visit http://materialadvantage.org/ or contact a member of the current student executive board (Appendix D).

Gaffer's Guild – an artistic glass blowing club with membership open to all ISU students and members of the Ames community. The group provides training to members each semester, but participation is limited depending on availability of instructors and studio time. For additional information, visit http://gaffer.stuorg.iastate.edu/ or contact a member of the current student executive board.

Metallurgica - an organization for students interested in the science and engineering of metals. It seeks to provide practical and hands-on opportunities for students, including competitions sponsored by the professional societies, tours of various facilities, and other experiences provided through university connections. It is a new organization, and in its inaugural year, students competed in the TMS “Blade smithing” competition and are currently working towards competing in a metallographic competition as well. New opportunities abound!

Recyclables for Music (REFORM) - an organization focused on innovation and sustainability through the lens of recycling waste plastics into 3D printing filament for creating musical instruments. REFORM currently has lab space in Hoover Hall that houses unique machinery for processing plastic, such as grinders, extruders, and 3D printers. Additionally, the lab contains a collection infrastructure for obtaining raw materials. REFORM is a relatively new organization, so any member can take ownership of the projects that they work on, experience a fun-loving team with far-reaching goals, and really make an impact on the direction of the organization as a whole! For more information, contact a member of our current student executive board (Appendix D).
III.L. Concurrent BS/MS Program Application Guidelines

Overview

The following information provides details of the MSE Department’s concurrent BS/MS or BS/MEng program and requirements. This information is also available on the MSE website at http://www.mse.iastate.edu/students/concurrent/.

The Department of Materials Science and Engineering can admit qualified seniors into the program for "Concurrent Enrollment for Graduate/Undergraduate Degrees." A student in this program pursues a graduate MS or MEng degree while simultaneously completing his/her undergraduate BS degree. After successfully completing the requirements for the BS and graduate degree, the student will receive both degrees at graduation – usually, but not always, on the same graduation date.

Students seeking admission to this program will typically apply during their junior year of undergraduate education or within one year before the expected semester of BS graduation. Students are encouraged to discuss the matter with their academic advisor, potential major professor, Director of Graduate Education (DOGE), or MSE Graduate Program Coordinator. An information packet is also available from the MSE Graduate Coordinator or MSE Undergraduate Academic Advisors in the main MSE Office, 2240 Hoover Hall.

Qualifications:

- Must meet the departmental minimum standards for graduate admission:
 - Minimum cumulative GPA of 3.0
- Minimum of 90 credits in B.S. degree requirements completed by the time of concurrent enrollment.
- For BS/MS Program: MSE faculty member must be identified to serve as major professor. (This is not needed for the BS/MEng Program, as the DOGE will serve as the graduate mentor.)

For information on the necessary forms and information needed to complete an application, please visit: https://www.grad-college.iastate.edu/academics/programs/apresults.php?id=75

Coursework

Students may double-count up to six credits between their B.S. and graduate degree requirements. However, courses may be used in this manner only when they are taken after the date the student officially begins the concurrent undergraduate/graduate program.
IV. CONCLUSION

We hope that the information presented in this handbook has helped to answer some of your questions as you begin your academic career in the department. We wish you great success in all of your activities while you are at Iowa State University and after you depart. We are here to help you achieve success in any way we can, so please do not hesitate to ask for assistance.
UNDERGRADUATE ACADEMIC ADVISORS

<table>
<thead>
<tr>
<th>NAME</th>
<th>OFFICE</th>
<th>PHONE</th>
<th>EMAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holly Dunlay-Lott</td>
<td>2240D Hoover</td>
<td>515-294-5713</td>
<td>hollyd@iastate.edu</td>
</tr>
<tr>
<td>Andrea Klocke</td>
<td>2240K Hoover</td>
<td>515-294-0891</td>
<td>aklocke@iastate.edu</td>
</tr>
</tbody>
</table>

HONORS PROGRAM FACULTY ADVISOR

<table>
<thead>
<tr>
<th>NAME</th>
<th>OFFICE</th>
<th>PHONE</th>
<th>EMAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scott Chumbley</td>
<td>2220BN Hoover</td>
<td>515-294-1435</td>
<td>chumbley@iastate.edu</td>
</tr>
</tbody>
</table>

UNDERGRADUATE CURRICULUM CHAIR

<table>
<thead>
<tr>
<th>NAME</th>
<th>OFFICE</th>
<th>PHONE</th>
<th>EMAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Pete Collins</td>
<td>2220AD Hoover</td>
<td>515-294-5127</td>
<td>pcollins@iastate.edu</td>
</tr>
</tbody>
</table>

APPENDIX B

MAT E DEGREE: 4-YEAR PLAN

(For curriculum sheets based on previous catalogs – see advisors)

Curriculum in Materials Engineering

2022 Catalog

Total credits required: 128

Freshman Year

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>16 cr</th>
<th>Year taken</th>
<th>Semester 2</th>
<th>17 cr</th>
<th>Year taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 165</td>
<td>4 cr</td>
<td></td>
<td>Math 166</td>
<td>4 cr</td>
<td></td>
</tr>
<tr>
<td>Chem 177</td>
<td>4 cr</td>
<td></td>
<td>Chem 178</td>
<td>3 cr</td>
<td></td>
</tr>
<tr>
<td>Chem 177L</td>
<td>1 cr</td>
<td></td>
<td>Chem 178L</td>
<td>1 cr</td>
<td></td>
</tr>
<tr>
<td>English 150</td>
<td>3 cr</td>
<td></td>
<td>Mat E 170(S)</td>
<td>3 cr</td>
<td></td>
</tr>
<tr>
<td>Engr 101</td>
<td>R cr</td>
<td></td>
<td>English 250</td>
<td>3 cr</td>
<td></td>
</tr>
<tr>
<td>Engr 160</td>
<td>3 cr</td>
<td></td>
<td>Gen Ed:</td>
<td>3 cr</td>
<td></td>
</tr>
<tr>
<td>Lib 160</td>
<td>1 cr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>16 cr</th>
<th>Year taken</th>
<th>Semester 4</th>
<th>16 cr</th>
<th>Year taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 255</td>
<td>4 cr</td>
<td></td>
<td>Mat E 301(S)</td>
<td>R cr</td>
<td></td>
</tr>
<tr>
<td>Mat E 215(F,S)</td>
<td>3 cr</td>
<td></td>
<td>Math 257</td>
<td>4 cr</td>
<td></td>
</tr>
<tr>
<td>Mat E 215L(F,S)</td>
<td>1 cr</td>
<td></td>
<td>Mat E 214(F,S)</td>
<td>3 cr</td>
<td></td>
</tr>
<tr>
<td>Phys 231</td>
<td>4 cr</td>
<td></td>
<td>Mat E 216(F,S)</td>
<td>3 cr</td>
<td></td>
</tr>
<tr>
<td>Phys 231L</td>
<td>1 cr</td>
<td></td>
<td>Mat E 216L(F,S)</td>
<td>1 cr</td>
<td></td>
</tr>
<tr>
<td>Gen Ed:</td>
<td>3 cr</td>
<td></td>
<td>Phys 232</td>
<td>4 cr</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phys 232L</td>
<td>1 cr</td>
<td></td>
</tr>
</tbody>
</table>

(U.S. Diversity)

Junior Year

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>15 cr</th>
<th>Year taken</th>
<th>Semester 6</th>
<th>15 cr</th>
<th>Year taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mat E 311(F)</td>
<td>3 cr</td>
<td></td>
<td>Mat E 314(S)</td>
<td>3 cr</td>
<td></td>
</tr>
<tr>
<td>Mat E 317(F)</td>
<td>3 cr</td>
<td></td>
<td>Mat E 319(S)</td>
<td>3 cr</td>
<td></td>
</tr>
<tr>
<td>Specialization:</td>
<td>3 cr</td>
<td></td>
<td>Specialization:</td>
<td>3 cr</td>
<td></td>
</tr>
<tr>
<td>Mat E elec.:</td>
<td>3 cr</td>
<td></td>
<td>Tech. elec.:</td>
<td>3 cr</td>
<td></td>
</tr>
<tr>
<td>Stat 305</td>
<td>3 cr</td>
<td></td>
<td>Gen Ed:</td>
<td>3 cr</td>
<td></td>
</tr>
</tbody>
</table>

(International Perspectives)

Senior Year

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>15 cr</th>
<th>Year taken</th>
<th>Semester 8</th>
<th>18 cr</th>
<th>Year taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mat E 413(F,S)</td>
<td>3 cr</td>
<td></td>
<td>Mat E 414(F,S)</td>
<td>3 cr</td>
<td></td>
</tr>
<tr>
<td>Mat E 418(F,S)</td>
<td>3 cr</td>
<td></td>
<td>Specialization:</td>
<td>3 cr</td>
<td></td>
</tr>
<tr>
<td>Specialization:</td>
<td>3 cr</td>
<td></td>
<td>Mat E elec.:</td>
<td>3 cr</td>
<td></td>
</tr>
<tr>
<td>Tech. elec.:</td>
<td>3 cr</td>
<td></td>
<td>Tech elec.:</td>
<td>3 cr</td>
<td></td>
</tr>
<tr>
<td>Tech. Writing*:</td>
<td>3 cr</td>
<td></td>
<td>Tech elec.:</td>
<td>3 cr</td>
<td></td>
</tr>
</tbody>
</table>

Gen Ed: 3 cr

Specialization Course Sequences

(Note: F offered Fall only, S offered S only)

<table>
<thead>
<tr>
<th>Ceramics</th>
<th>Metals</th>
<th>Polymers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mat E 321(F)</td>
<td>Mat E 341(F)</td>
<td>Mat E 351(F)</td>
</tr>
<tr>
<td>Mat E 322(S)</td>
<td>Mat E 342(S)</td>
<td>Mat E 350(S)</td>
</tr>
<tr>
<td>Mat E 425(F)</td>
<td>Mat E 443(F)</td>
<td>Mat E 453(F)</td>
</tr>
<tr>
<td>Mat E 433(S)</td>
<td>Mat E 444(S)</td>
<td>Mat E 454(S)</td>
</tr>
</tbody>
</table>

*Choose one of the following courses: Engl 314, Engl 302, or Engl 309.
Materials engineering students are encouraged to select Gen Ed courses that broaden their academic program. Courses in the social sciences (sociology, anthropology, journalism and mass communication, economics, political science, human development and family studies, psychology) or humanities (architecture, literature, foreign language, philosophy, religion, history) are especially encouraged.

All materials engineering majors must take 12 credits of Gen Ed courses. The university requirements for U.S. Diversity and International Perspectives must be met, and can be met through the courses selected in the Gen Ed requirement.

Any university course may be taken to fulfill the Gen Ed requirements, as long as it meets the following rules:

1. The course may not be remedial - courses must be at the 100+ level.
2. The course may not be offered in engineering, physics, chemistry, or mathematics.
3. You may not use an orientation course from another department (e.g. BUSAD 101).
4. The course may not be one that could have counted as a technical elective (e.g. 100- and 200-level Biol courses may be used as a Gen Ed. However, a 300+ level Biol course may not be used as a Gen Ed since it can count as a tech elective)
5. You must complete at least 6 credits at the 200-level or higher toward the Gen Ed requirement.
6. You may not use more than 9 credits from a single department toward the Gen Ed requirement.
7. No “skills” courses may be used. (e.g. Kinesiology courses - golf, tennis, etc. or music courses focused on playing an instrument or participating in band, choir, etc.)
<table>
<thead>
<tr>
<th>ACCT – Accounting</th>
<th>FRNCH - French</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVRT – Advertising</td>
<td>GEOL - Geology (100 or 200 level)</td>
</tr>
<tr>
<td>AF AM – African American Studies</td>
<td>GER - German</td>
</tr>
<tr>
<td>AGRON – Agronomy (100 or 200 level)</td>
<td>GERON - Gerontology</td>
</tr>
<tr>
<td>AFAS – Air Force Aerospace Studies</td>
<td>GLOBE - Global Resource Systems</td>
</tr>
<tr>
<td>AM IN – American Indian Studies</td>
<td>H S - Health Studies</td>
</tr>
<tr>
<td>ASL – American Sign Language</td>
<td>HIST - History</td>
</tr>
<tr>
<td>AN S – Animal Science</td>
<td>HORT - Horticulture</td>
</tr>
<tr>
<td>ANTHR – Anthropology</td>
<td>HD FS - Human Development and Family Studies</td>
</tr>
<tr>
<td>AESLM – Apparel, Events, and Hospitality Management</td>
<td>HSP M – Hospitality Management</td>
</tr>
<tr>
<td>A M D – Apparel, Merchandising and Design</td>
<td>IND D - Industrial Design</td>
</tr>
<tr>
<td>ARABC – Arabic</td>
<td>INTST – International Studies</td>
</tr>
<tr>
<td>ARCH – Architecture</td>
<td>JL MC - Journalism and Mass Communication</td>
</tr>
<tr>
<td>ART – Art and Design</td>
<td>L A - Landscape Architecture</td>
</tr>
<tr>
<td>ARTED – Art Education</td>
<td>LAS - Liberal Arts and Sciences</td>
</tr>
<tr>
<td>ARTGR - Graphic Design</td>
<td>LATIN – Latin Language</td>
</tr>
<tr>
<td>ART H – Art History</td>
<td>LD ST – Leadership Studies</td>
</tr>
<tr>
<td>ARTIS - Integrated Studio Arts</td>
<td>LING - Linguistics</td>
</tr>
<tr>
<td>ARTID - Interior Design</td>
<td>MGMT - Management</td>
</tr>
<tr>
<td>ASTRO – Astronomy and Astrophysics (100 or 200 level)</td>
<td>MIS - Management Information Systems</td>
</tr>
<tr>
<td>A TR - Athletic Training</td>
<td>MKT - Marketing</td>
</tr>
<tr>
<td>BBMB - Biochemistry, Biophysics, and Molecular Biology (100 or 200 level)</td>
<td>MTEOR – Meteorology (100 or 200 level)</td>
</tr>
<tr>
<td>BCBIO - Bioinformatics and Computational Biology (100 or 200 level)</td>
<td>MICRO – Microbiology (100 or 200 level)</td>
</tr>
<tr>
<td>BPM I - Biological/Pre-Medical Illustration</td>
<td>M S - Military Science</td>
</tr>
<tr>
<td>BIOL - Biology (100 or 200 level) + Biol 307</td>
<td>MUSIC (see advisor for courses allowed)</td>
</tr>
<tr>
<td>CHIN - Chinese</td>
<td>NREM - Natural Resource Ecology and Management</td>
</tr>
<tr>
<td>CL ST - Classical Studies</td>
<td>N S - Naval Science</td>
</tr>
<tr>
<td>CMDIS - Communication Disorders</td>
<td>PHIL - Philosophy</td>
</tr>
<tr>
<td>COMST - Communication Studies</td>
<td>POL S - Political Science</td>
</tr>
<tr>
<td>C R P - Community and Regional Planning</td>
<td>PORT - Portuguese</td>
</tr>
<tr>
<td>COM S - Computer Science (200 level)</td>
<td>PSYCH - Psychology</td>
</tr>
<tr>
<td>C J - Criminal Justice</td>
<td>RELIG - Religious Studies</td>
</tr>
<tr>
<td>DES - Design</td>
<td>RUS - Russian Language</td>
</tr>
<tr>
<td>DS – Data Science (200 level)</td>
<td>SCM - Supply Chain Management</td>
</tr>
<tr>
<td>DSN S - Design Studies</td>
<td>SOC - Sociology</td>
</tr>
<tr>
<td>ECON - Economics</td>
<td>SPAN - Spanish</td>
</tr>
<tr>
<td>ENGL - English</td>
<td>SP ED - Special Education</td>
</tr>
<tr>
<td>ENSCI - Environmental Science (200 level)</td>
<td>SP CM - Speech Communication</td>
</tr>
<tr>
<td>ENV S - Environmental Studies</td>
<td>THTRE - Theatre</td>
</tr>
<tr>
<td>EVENT - Event Management</td>
<td>US LS – U.S. Latino/a Studies Program</td>
</tr>
<tr>
<td>FCEDS - Family and Consumer Sciences Education and Studies</td>
<td>WGS – Women’s and Gender Studies</td>
</tr>
<tr>
<td>FIN - Finance</td>
<td>WLC - World Languages and Cultures</td>
</tr>
<tr>
<td>FS HN - Food Science and Human Nutrition</td>
<td>W F S - World Film Studies</td>
</tr>
<tr>
<td>FOR - Forestry (100 or 200 level)</td>
<td></td>
</tr>
</tbody>
</table>
Common Gen Ed Courses Taken by Mat E Undergraduates

Use this as a starting point, but there are many other options for courses if these do not appeal to you – see rules on page 17-18 for details.

ACCT 284. Financial Accounting

(3-0) Cr. 3. F.S.S.S.
Introduction to the basic concepts and procedures of financial accounting from a user perspective. The course examines the accounting cycle, business terminology, basic control procedures, and the preparation and evaluation of financial reports, with an emphasis on financial statement analysis.

AF AM 201. Introduction to African American Studies

(3-0) Cr. 3. F.S.
An interdisciplinary introduction to the study of African American culture. Includes history, the social sciences, literature, religion, and the arts, as well as conceptual frameworks for investigation and analysis of the African American experience.

Meets U.S. Diversity Requirement.

AM IN 210. Introduction to American Indian Studies

(3-0) Cr. 3. F.S.S.S.
Introduction to the multidisciplinary aspects of American Indian Studies. Topics include the relevant events and ideas defining the contemporary American Indian experience, on and off reservation, in the United States. Sovereignty, identity, jurisdiction, taxes, economic development, education, and other issues are addressed.

Meets U.S. Diversity Requirement.

ANTHR 201. Introduction to Cultural Anthropology

(3-0) Cr. 3. F.S.S.S.
Comparative study of culture as key to understanding human behaviors in different societies. Using a global, cross-cultural perspective, patterns of family life, economic and political activities, religious beliefs, and the ways in which cultures change are examined.

Meets International Perspectives Requirement.

ANTHR 220. Globalization and Sustainability

(Cross-listed with ENV S, GLOBE, M E, MAT E, SOC, T SC). (3-0) Cr. 3. F.S.
An introduction to understanding the key global issues in sustainability. Focuses on interconnected roles of energy, materials, human resources, economics, and technology in building and maintaining sustainable systems. Applications discussed will include challenges in both the developed and developing world and will examine the role of technology in a resource-constrained world. Cannot be used for technical elective credit in any engineering department.

Meets International Perspectives Requirement.
ANTHR 230. Globalization and the Human Condition

(3-0) Cr. 3. F.S.
An introduction to understanding key global issues in the contemporary world. Focuses on social relations, cultural practices and political-economic linkages among Africa, the Americas, Asia, Europe and the Pacific.
Meets International Perspectives Requirement.

A M D 165. Dress, Appearance, and Diversity in Society

(3-0) Cr. 3. F.S.
Examination of dress and appearance practices and experiences of marginalized identities and communities in the United States. Introduction to fashion- and dress-related theories, culture and identity concepts, and social justice concepts and issues in regards to dress, appearance, and fashion in the fashion industry.
Meets U.S. Diversity Requirement.

ASTRO 120. The Sky and the Solar System.

(3-0) Cr. 3. F.S.SS.
For the nonscientist. A survey of our view of the universe, and the exploration of the solar system and beyond. The sky: constellations; motions of the Sun, Moon, and planets; seasons and the calendar; eclipses. The solar system: origin and evolution; characteristics of the Sun, planets, satellites, comets, meteorites, and asteroids. The detection and characterization of other solar systems, and the search for life in the universe. Extensive use of the planetarium is included. Students who take Astro 120 may count credit in only one of Astro 102 or 103 toward graduation.

ASTRO 150. Stars, Galaxies, and Cosmology.

(3-0) Cr. 3. F.S.
For the nonscientist. Observational aspects of stellar astronomy: motions, distances, sizes, spectra; types of stars; variability; binary systems. Stellar evolution: the birth, life, and death of stars, including supernovae, neutron stars, and black holes. The Milky Way Galaxy: clouds of matter in space, the structure and evolution of our galaxy. Other galaxies, clusters of galaxies, quasars. Theories of the origin of the universe.

BIOL 101. Introductory Biology.

(3-0) Cr. 3. F.S.SS.
Life considered at cellular, organism, and population levels. Function and diversity of the living world. Presentation of basic biological principles as well as topics and issues of current human interest. Does not satisfy biology major requirements.
BIOL 211. Principles of Biology I.

(3-0) Cr. 3. F.S.
Prereq: High school biology
Introduction to the nature of life, including the diversity of microbial, plant, and animal life; the nature of heredity; evolution; and principles of ecology. Intended for life science majors.

BIOL 212. Principles of Biology II.

(3-0) Cr. 3. F.S. Prereq: High School Biology; high school chemistry or credit or enrollment in CHEM 163 or CHEM 177
Introduction to the chemical, molecular, and cellular basis of life; form and function of microbial, plant, and animal life. Intended for life science majors.

BIOL 255. Fundamentals of Human Anatomy.

(3-0) Cr. 3. F. Prereq: High School Biology and Chemistry, or BIOL 101
An introduction to human anatomy, beginning with cells and tissues, surveying all body systems, relating form to function. Systems covered include: integumentary, bones and joints, muscles, nervous, sensory, endocrine, circulatory, lymphatic, respiratory, digestive, urinary, and reproductive. Pre-Medical students should consider Biol 351 for their anatomy background. Does not satisfy biology major requirements.

BIOL 256. Fundamentals of Human Physiology.

(3-0) Cr. 3. S. Prereq: High School Biology and Chemistry, or BIOL 101, or BIOL 255 (recommended)
An introduction to human physiology, studying the function of all body systems. Systems covered include: integumentary, bones and joints, muscles, nervous, sensory, endocrine, circulatory, lymphatic and immune, respiratory, digestive, urinary, and reproductive. Pre-Medical students should consider 335 for their physiology background. Does not satisfy biology major requirements.

CL ST 273. Greek and Roman Mythology.

(3-0) Cr. 3.
Survey of the legends, myths of the classical world with emphasis on the principal gods, and heroes, and their relation to ancient social, psychological, and religious practices; some attention may be given to important modern theories.
Meets International Perspectives Requirement.
COMST 211. Interpersonal Communication.

(3-0) Cr. 3.
Application of major principles related to interpersonal communication theories, concepts, and research. Emphasis on using interpersonal communication skills effectively.

COMST 214. Professional Communication.

(3-0) Cr. 3.
Communication theory and skill development in organizational settings. Emphasis on interpersonal skill development, team and meeting facilitation, informational interviewing, individual and team presentations, and self-assessment.

(Cross-listed with MIS). (3-1) Cr. 3. F.S. Prereq: MATH 150 or placement into MATH 140 or higher
An introduction to computer programming using an object-oriented programming language. Emphasis on the basics of good programming techniques and style. Extensive practice in designing, implementing, and debugging small programs. Use of abstract data types. Interactive and file I/O. Exceptions/error-handling. This course is not designed for computer science, software engineering, and computer engineering majors. Credit may not be applied toward graduation for both Com S 207/MIS 207 and Com S 227.

(3-1) Cr. 3. S. Prereq: MIS/COM S 207, credit or enrollment in MATH 151, MATH 160, or MATH 165
Intermediate-level programming techniques. Emphasis on designing, writing, testing, debugging, and documenting medium-sized programs. Data structures and their uses. Dynamic memory usage. Inheritance and polymorphism. Algorithm design and efficiency: recursion, searching, and sorting. Event-driven and GUI programming. The software development process. This course is not designed for computer science, software engineering and computer engineering majors. Credit may not be applied toward the major in computer science, software engineering, or computer engineering.
COM S 227. Introduction to Object-oriented Programming.

(3-2) Cr. 4. F.S.SS.
Prereq: Credit or Enrollment in MATH 143 or higher; recommended: a previous high school or college course in programming or equivalent experience.
Computer programming using objects as the mechanism for modularity, abstraction, and code reuse. Instance variables, methods, and encapsulation. Review of control structures for conditionals and iteration. Developing algorithms on strings, arrays, and lists. Recursion, searching, and sorting. Text parsing and file I/O. Interfaces, inheritance, polymorphism, and abstract classes. Exception handling. Tools for unit testing and debugging. Emphasis on a disciplined approach to specification, code development, and testing. Course intended for Com S majors. Credit may not be applied toward graduation for both Com S 207 and 227.

(3-0) Cr. 3. F.S.SS.

(3-0) Cr. 3. Prereq: ECON 101 recommended

GEOL 100. How the Earth Works.

(3-0) Cr. 3. F.S.SS.
How does the earth work, what is it made of, and how does it change through time? Plate tectonics, Earth materials, landforms, structures, climate, and natural resources. Emphasis on the observations and hypotheses used to interpret earth system processes. Students may also enroll in Geol 100L.

(Cross-listed with ENV S). (3-0) Cr. 3. F.S.SS.
Exploration of the interactions between humans and the geologic environment, and the consequences of those interactions, on local to global scales. Discussion of water, soil, mineral, and energy resources, pollution, climate change, and natural hazards such as earthquakes, volcanism, mass wasting, and flooding.
HD FS 240. Literature for Children.

(3-0) Cr. 3. F.S.
Evaluation of literature for children, including an emphasis on cultural, racial, ethnic, and social diversity. Roles of literature in the overall development of children. Literature selection and use in the home and educational settings.
Meets U.S. Diversity Requirement.

(3-0) Cr. 3. F.S.SS.
Behavioral, biological, and psychological aspects of human sexuality within the social context of family, culture, and society. Role of sexuality in human development. Critical analysis of media and research. Communication and decision-making skills relating to sexuality issues and relationships.
Meets U.S. Diversity Requirement.

HIST 201. Introduction to Western Civilization I.

(3-0) Cr. 3. F.
Western civilization from ancient Mediterranean world to 1500. Social and cultural developments; economic and political ideas and institutions; problems of historical change and continuity.
Meets International Perspectives Requirement.

HIST 202. Introduction to Western Civilization II.

(3-0) Cr. 3. S.
Western civilization from 1500 to present. Social and cultural developments; economic and political ideas and institutions; problems of historical change and continuity.
Meets International Perspectives Requirement.

HIST 221. Survey of United States History I.

(3-0) Cr. 3-5. F.
Colonial foundations: revolution, confederation, and constitution; nationalism and democracy; sectional disunity, Civil War, and reunion.

HIST 222. Survey of United States History II.

(3-0) Cr. 3. S.
Industrialization; emergence as a great power; boom and depression; war, internationalism and Cold War; modern industrial society.
HIST 280. Introduction to History of Science I.

(3-0) Cr. 3. F.
Ideas of nature from ancient Greece to the seventeenth-century scientific revolution.
Meets International Perspectives Requirement.

HIST 281. Introduction to History of Science II.

(3-0) Cr. 3. S.
Science from seventeenth-century scientific revolution to Darwin and Einstein.
Meets International Perspectives Requirement.

INTST 235. Introduction to International Studies.

(3-0) Cr. 3. F.S.S.
Overview of international studies, emphasizing cultural, geographic, economic, and political characteristics of major world areas and nations.
Meets International Perspectives Requirement.

LD ST 322: Leadership in a Diverse Society

(3-0) Cr. 3. F.S.S.S. Prereq: Sophomore classification
Analyze the relationship between leadership and concepts of identity, power, and privilege in the U.S. Develop and practice inclusive leadership.
Meets U.S. Diversity Requirement.

LING 286. Communicating with the Deaf.

(Cross-listed with CMDIS). (3-0) Cr. 3.
Learn to communicate with the deaf using Signed English and Signed Pidgin English. Other topics covered include types, causes, and consequences of hearing loss, hearing technology (hearing aids, assistive listening devices, and cochlear implants), education of hearing-impaired children, Deaf culture, and the history of manual communication.
Meets U.S. Diversity Requirement.

MUSIC 102. Introduction to Music Listening.

(3-0) Cr. 3. F.S.S.S.
Expansion of the music listening experiences for the general student through greater awareness of differences in techniques of listening, performance media, and materials of the art. The course focuses on the elements of music: rhythm, melody, harmony, form, and style, and how these elements are used in musics of different cultures and time periods. Ability to read or perform music not required.
Meets International Perspectives Requirement.
MUSIC 304. History of Rock 'n' Roll.

(3-0) Cr. 3. S. Prereq: MUSIC 101, MUSIC 102, MUSIC 221, or MUSIC 222
Rock 'n' Roll from the mid 1950s through the 1990s, focusing on the development of rock styles from its roots in blues, folk, country, and pop. Expansion of listening experience through study of song forms, musical instruments of rock, and the socio-political significance of song lyrics. Examinations, research paper or in class presentation required. Ability to read or perform music not required.
Meets U.S. Diversity Requirement.

PHIL 201. Introduction to Philosophy.

(3-0) Cr. 3. F.S.SS.
It has been rumored that the unexamined life is not worth living. Philosophy is an attempt to begin examining life by considering such questions as: What makes us human? What is the world ultimately like? How should we relate to other people? Is there a god? How can we know anything about these questions? Understanding questions of this kind and proposed answers to them is what this course is all about.

(3-0) Cr. 3. F.S.SS.
Investigation of moral issues in the context of major ethical theories of value and obligation; e.g., punishment, abortion, economic justice, job discrimination, world hunger, and sexual morality. Emphasis on critical reasoning and argument analysis.

PHIL 235. Ethical Issues in A Diverse Society.

(3-0) Cr. 3. F.S.
This course will examine a range of arguments on diversity issues. Topics will include: the social status of women, the moral status of sexuality and homosexuality, the nature and role of racism in contemporary society, the relationship between biology, gender roles and social status, and various proposals for change from a variety of political perspectives.
Meets U.S. Diversity Requirement.

POL S 111. Introduction to American Government.

(3-0) Cr. 3. F.S.SS.
Fundamentals of American democracy; constitutionalism; federalism; rights and duties of citizens; executive, legislative, and judicial branches of government; elections, public opinion, interest groups, and political parties.

(3-0) Cr. 3. F.S.
Interactions between governments and citizens in countries outside the US. Causes of democracy, dictatorship, and economic and social development.
Meets International Perspectives Requirement.

POL S 121. Introduction to International Politics.

(3-0) Cr. 3. F.S.
Dynamics of interstate relations pertaining to nationalism, the nation state; peace and war; foreign policy making; the national interest; military capability and strategy; case studies of transnational issues, such as population, food, energy, and terrorism.
Meets International Perspectives Requirement.

PSYCH 101. Introduction to Psychology.

(3-0) Cr. 3. F.S.SS.
Fundamental psychological concepts derived from the application of the scientific method to the study of behavior and mental processes. Applications of psychology.

PSYCH 230. Developmental Psychology.

(3-0) Cr. 3. F.S.SS.
Life-span development of physical traits, cognition, intelligence, language, social and emotional behavior, personality, and adjustment.

PSYCH 280. Social Psychology.

(3-0) Cr. 3. F.S.SS.
Individual human behavior in social contexts. Emphasis on social judgments and decisions, attitudes, perceptions of others, social influence, aggression, stereotypes, and helping.

RELIG 205. World Religions.

(3-0) Cr. 3. F.S.SS.
An introduction to religious studies – the academic study of religion. Religions from around the world will be discussed, including their myths, rituals, beliefs, values, and social forms.
Meets International Perspectives Requirement.

(3-0) Cr. 3. F.S.SS.
Introductory study of the major beliefs, practices, and institutions of American Judaism, Catholicism, Protestantism, and Islam with emphasis on the diversity of religion in America, and attention to issues of gender, race, and class.
Meets U.S. Diversity Requirement

SOC 134. Introduction to Sociology.

(3-0) Cr. 3. F.S.SS.
Social interaction and group behavior with emphasis on the scientific study of contemporary U.S. society, including issues relating to socialization, inequality, and changing rural and urban communities. Analysis of relationships among the institutions of family, religion, political participation, work, and leisure.

(3-0) Cr. 3. F.S.SS. Prereq: SOC 134
Analysis of intimate relationships among couples using a sociological perspective. Attention is given to singlehood; dating and courtship; sexuality; mate selection, cohabitation, and marriage. Relationship quality, communication, conflict and dissolution of these types of relationship will also be explored.

SOC 220. Globalization and Sustainability.

(Cross-listed with ANTHR, ENV S, GLOBE, M E, MAT E, T SC). (3-0) Cr. 3. F.S.
An introduction to understanding the key global issues in sustainability. Focuses on interconnected roles of energy, materials, human resources, economics, and technology in building and maintaining sustainable systems. Applications discussed will include challenges in both the developed and developing world and will examine the role of technology in a resource-constrained world. Cannot be used for technical elective credit in any engineering department.
Meets International Perspectives Requirement.

SOC 235. Social Problems and American Values.

(3-0) Cr. 3. F.S. Prereq: SOC 134
Sociological concepts, theories and methods to analyze the causes and consequences of social problems. Social problems discussed may include crime, substance abuse, income inequalities, discrimination, poverty, race relations, health care, family issues, and the environment. How American culture and values shape societal conditions, public discourse and policy.
Meets U.S. Diversity Requirement.
SP CM 212. Fundamentals of Public Speaking.

(3-0) Cr. 3. F.S.SS.
Theory and practice of basic speech communication principles applied to public speaking. Practice in the preparation and delivery of extemporaneous speeches.

SP CM 216. America Speaks: Great Speakers and Speeches in US History.

Cr. 3.
Survey of great speeches examined within their political and cultural contexts. Analysis of the rhetorical strategies of diverse speakers with an emphasis on texts from social movements in the United States.
Meets U.S. Diversity Requirement.

SP CM 312. Business and Professional Speaking.

(3-0) Cr. 3. F.S. Prereq: SP CM 212
Theory, principles, and competency development in the creation of coherent, articulate business and professional oral presentations.

THTRE 110. Theatre and Society.

(3-0) Cr. 3. F.S.
An introduction to Theatre focusing on its relationship with society throughout history.

THTRE 251. Acting Foundations.

(3-0) Cr. 3. F.S.
Theory and practice in fundamentals of acting.
Any 300+ level course in the departments listed below.

However, you **cannot** use the following courses to meet this requirement:

- 490/499/590 course in any department
- Biol 307 (cross-listed with W S)
- Mat E 391, Mat E 392
- M E 484/584 (cross-listed with WLC)
- Stat 305

AER E – Aerospace Engineering
A B E – Agricultural and Biosystems Engineering
ASTRO – Astronomy and Astrophysics
BBMB – Biochemistry, Biophysics, and Molecular Biology
B M E – Biomedical Engineering
BIOL – Biology
C E – Civil Engineering
C H E – Chemical Engineering
C H E M – Chemistry
COM S – Computer Science
C O N E – Construction Engineering
C P R E – Computer Engineering
E E – Electrical Engineering
E M – Engineering Mechanics
E N S C I – Environmental Science
(*not to be confused with ENV S – Environmental Studies – which **cannot** be used as a tech elective)
GEN – Genetics
G E O L – Geology
I E – Industrial Engineering
M A T H – Mathematics
M A T E – Materials Engineering
M E – Mechanical Engineering
M I C R O – Microbiology
M S E – Materials Science & Engineering (graduate-level courses)
P H Y S – Physics
S E – Software Engineering
S T A T – Statistics

Additionally, the following 200-level courses may be used toward this requirement:

- Math 207
- BME 220
- BME 208X
Recommendations for Technical Electives

If you are interested in metals…

- Mat E 334 (S) – Electronic & Magnetic Properties of Metallic Materials
- IE/Mat E 348 (S) – Solidification Processes
- Mat E 457 (alternate S) – Chemical and Physical Metallurgy of Rare Earth Metals

If you are interested in polymers…

- Ch E 447 (S) – Polymers and Polymer Engineering
- Aer E 423 (S) – Composite Flight Structures
- Mat E 456 (F) - Biomaterials

If you are interested in electronic properties of materials…

- Mat E 334 (S) – Electronic & Magnetic Properties of Metallic Materials
- Mat E 433 (S) – Advanced Electronic Materials
- Mat E 332 (F, S) – Semiconductor Materials and Devices
- Mat E 432 (S) – Microelectronics Fabrication Techniques

If you are interested in biomaterials…

- Mat E 456 (F) – Biomaterials
- Ch E 440 (alt. F) – Biomedical Applications of Chemical Engineering
- Consider the Biomedical engineering minor

If you are interested in business applications in engineering…

- IE 305 (F, S, SS) – Engineering Economic Analysis
- IE 450 (F) – Technical Sales for Engineers I
- IE 451 (S) – Technical Sales for Engineers II

To prepare for graduate school in Materials Science & Engineering…

- Math 385 (F, S) – Introduction to Partial Differential Equations
- Phys 321 (F) – Introduction to Modern Physics I
- Phys 322 (S) – Introduction to Modern Physics II
- Mat E 481 (F) – Computational Modeling of Materials
MATERIAL ADVANTAGE (ACerS, ASM, and TMS combined)

https://stuorgs.engineering.iastate.edu/material-advantage/

PRESIDENTRebecca Patush
VICE PRESIDENTLiz Griffin
TREASURERNick Oldham
OUTREACH CHAIRSAdam Eichorn and Tyler Rodriguez
SECRETARYCharles Bruchal
SOPH OUTREACH CHAIRErik DeMeyere
FUNDRAISING CHAIRJarrett Loseke
SOCIAL CHAIRKody Crawford
PR CHAIRAbby Stanlick
RISK MANAGEMENT CHAIRGrant Kelly
FACULTY ADVISORDr. Sid Pathak

METALLURGICA

Metallurgica is an organization for students interested in the science and engineering of metals. It seeks to provide practical and hands-on opportunities for students, including competitions sponsored by the professional societies, tours of various facilities, and other experiences provided through university connections. It is a new organization, and in its inaugural year, students competed in the TMS “Blade smithing” competition and are currently working towards competing in a metallographic competition as well. New opportunities abound!

https://www.facebook.com/ISUMetallurgica/

FACULTY ADVISOR: Dr. Pete Collins

RECYCLABLES FOR MUSIC (REFORM)

PRESIDENTAbby Stanlick
VICE PRESIDENTErik DeMeyere
RECYCLING TEAM LEADWilliam Brumm
PROCESS TEAM LEADCraig Hardy
MUSIC AND OUTREACH
TEAM LEADTBD
LAB COORDINATORHaley Schultz (F’22), Parker Houdeshell (S’23)
TREASURERRyan Kadavy